Continuous delivery definition

Continuous delivery (CD) is a software engineering approach in which teams produce software in short cycles, ensuring that the software can be reliably released at any time and, when releasing the software, without doing so manually

 It aims at building, testing, and releasing software with greater speed and frequency. The approach helps reduce the cost, time, and risk of delivering changes by allowing for more incremental updates to applications in production. A straightforward and repeatable deployment process is important for continuous delivery.

CD contrasts with continuous deployment, a similar approach in which software is also produced in short cycles but through automated deployments rather than manual ones.

Continuous delivery and DevOps are similar in their meanings and are often conflated, but they are two different concepts. DevOps has a broader scope, and centers around the cultural change, specifically the collaboration of the various teams involved in software delivery (developers, operations, quality assurance, management, etc.), as well as automating the processes in software delivery. Continuous delivery, on the other hand, is an approach to automate the delivery aspect, and focuses on bringing together different processes and executing them more quickly and more frequently. Thus, DevOps can be a product of continuous delivery, and CD flows directly into DevOps.

Continuous Delivery process diagram.svg

Developers used to a long cycle time may need to change their mindset when working in a CD environment. It is important to understand that any code commit may be released to customers at any point. Patterns such as feature toggles can be very useful for committing code early which is not yet ready for use by end users. Using NoSQL can eliminate the step of data migrations and schema changes, often manual steps or exceptions to a continuous delivery workflow. Other useful techniques for developing code in isolation such as code branching are not obsolete in a CD world, but must be adapted to fit the principles of CD – for example, running multiple long-lived code branches can prove impractical, as a releasable artifact must be built early in the CD process from a single code branch if it is to pass through all phases of the pipeline.[

Continuous delivery treats the commonplace notion of a deployment pipeline as a lean Poka-Yoke:a set of validations through which a piece of software must pass on its way to release. Code is compiled if necessary and then packaged by a build server every time a change is committed to a source control repository, then tested by a number of different techniques (possibly including manual testing) before it can be marked as releasable.

Several benefits of continuous delivery have been reported.

  • Accelerated Time to Market: CD lets an organization deliver the business value inherent in new software releases to customers more quickly. This capability helps the company stay a step ahead of the competition.
  • Building the Right Product: Frequent releases let the application development teams obtain user feedback more quickly. This lets them work on only the useful features. If they find that a feature isn’t useful, they spend no further effort on it. This helps them build the right product.
  • Improved Productivity and Efficiency: Significant time savings for developers, testers, operations engineers, etc. through automation.
  • Reliable Releases: The risks associated with a release have significantly decreased, and the release process has become more reliable. With CD, the deployment process and scripts are tested repeatedly before deployment to production. So, most errors in the deployment process and scripts have already been discovered. With more frequent releases, the number of code changes in each release decreases. This makes finding and fixing any problems that do occur easier, reducing the time in which they have an impact.
  • Improved Product Quality: The number of open bugs and production incidents has decreased significantly.
  • Improved Customer Satisfaction: A higher level of customer satisfaction is achieved.

Obstacles have also been investigated.

  • Customer preferences: Some customers do not want continuous updates to their systems. This is especially true at the critical stages in their operations.
  • Domain restrictions: In some domains, such as telecom and medical, regulations require extensive testing before new versions are allowed to enter the operations phase.
  • Lack of test automation: Lack of test automation leads to a lack of developer confidence and can prevent using continuous delivery.
  • Differences in environments: Different environments used in development, testing and production can result in undetected issues slipping to the production environment.
  • Tests needing a human oracle: Not all quality attributes can be verified with automation. These attributes require humans in the loop, slowing down the delivery pipeline.

Eight further adoption challenges were raised and elaborated by Chen.[6] These challenges are in the areas of organizational structure, processes, tools, infrastructure, legacy systems, architecting for CD, continuous testing of non-functional requirements, and test execution optimization.

Leave a Reply